
nanofmt Documentation

Sean Middleditch and contributors

Jan 16, 2024

CONTENTS

1 API 3
1.1 Formatting . 3
1.2 Character Conversion . 7

2 Design 9
2.1 Origins . 9
2.2 Output Iterators . 9
2.3 Localization . 10
2.4 Character Conversion . 10
2.5 constexpr . 11
2.6 Alignment, Width, Alternate Forms, and Other Specifiers . 11

3 FAQ 13
3.1 Who is This For? . 13
3.2 Why?? . 14
3.3 Compile Times? Really? . 14
3.4 Why Avoid Standard Headears? . 14
3.5 How Does nanofmt Help With Compile Times? . 15
3.6 No IO Support For Real? . 15
3.7 Won’t C++20 Modules Make This Obsolute? . 15
3.8 What Does nanofmt Support? . 16
3.9 What Does nanofmt Not Support? . 16
3.10 Does it Support Floating-Point Types? . 16
3.11 Was it Worth It? . 16
3.12 Will This be Maintained? . 17

4 Benchmarks 19
4.1 Compilation . 19
4.2 Execution . 19

5 License 21

6 Basic Usage 23

7 API Overview 25

8 The Case for nanofmt 27

9 Detailed Examples 29
9.1 Custom Types . 29
9.2 Length-Delimited Buffers . 30

i

Index 31

ii

nanofmt Documentation

nanofmt aims to provide a lite-weight semi-compatible implementation of the excellent fmtlib. This can be used in
environments or team cultures where neither std::format nor fmtlib are available for use.

Contents

• nanofmt

– Basic Usage

• API Overview

• The Case for nanofmt

• Detailed Examples

– Custom Types

– Length-Delimited Buffers

CONTENTS 1

https://github.com/fmtlib/fmt
https://en.cppreference.com/w/cpp/utility/format/format

nanofmt Documentation

2 CONTENTS

CHAPTER

ONE

API

Contents

• API

– Formatting

∗ Format to Array

∗ Length-Delimited Formatting

∗ Custom Formatters

∗ Format Length

∗ Output Buffers

∗ Format to Buffer

∗ String Utilities

∗ Format Strings

∗ Variadic Arguments

– Character Conversion

1.1 Formatting

The format API is available in the header nanofmt/format.h.

The header nanofmt/forward.h offers forward declarations of nanofmt types, including the formatter<T> template
that users must specialize to support custom types.

Extensions for C++ standard library string types are in the header nanofmt/std_string.h.

3

nanofmt Documentation

1.1.1 Format to Array

The nanofmt::format_to() functions format a given format string and arguments into the target buffer. The result
will be NUL-terminated. The return value is a pointer to the terminating NUL character.

The nanofmt::format_append_to() functions format a given format string and arguments onto the end of target
buffer. The result will be NUL- terminated. The return value is a pointer to the terminating NUL character.

char *nanofmt::format_to(char (&dest)[N], format_string format_str, Args const&... args)

char *nanofmt::vformat_to(char (&dest)[N], format_string format_str, format_args args)

char *nanofmt::format_append_to(char (&dest)[N], format_string format_str, Args const&... args)

char *nanofmt::vformat_append_to(char (&dest)[N], format_string format_str, format_args args)

1.1.2 Length-Delimited Formatting

The nanofmt::format_to_n() functions format a given format string and arguments into the target buffer, up to the
given number of characters. The result will NOT be NUL-terminated. The return value is a pointer to one past the last
character written.

The nanofmt::format_append_to_n() functions format a given format string and arguments onto the end of the
target buffer, up to the given number of characters. The result will NOT be NUL-terminated. The return value is a
pointer to one past the last character written.

char *nanofmt::format_to_n(char *dest, std::size_t count, format_string format_str, Args const&... args)

char *nanofmt::vformat_to_n(char *dest, std::size_t count, format_string format_str, format_args&&)

char *nanofmt::format_append_to_n(char *dest, std::size_t count, format_string format_str, Args const&...
args)

char *nanofmt::vformat_append_to_n(char *dest, std::size_t count, format_string format_str, format_args&&)

1.1.3 Custom Formatters

The nanofmt::formatter template must be specialized to add support for user-provided types.

Two member functions, parse and format, must be implemented on the specialized structure for nanofmt to work.

template<typename T>
struct nanofmt::formatter

Custom formatter. May include any member variables necesasry to convey format information from parse to
format.

char const *parse(char const *in, char const *end)
Consumes characters from in up to, but not including, end. Returns a pointer to one past the last character
consumed.

void format(T const &value, format_output &out) const
Formats value to out.

A header implementing a custom formatter may choose to only depend on nanofmt/foward.h header. This header
does not offer any of the implementations, nor does it provide declarations of the formatting functions. A formatter
may work around this by specifying the format_output& parameter of format as a template, as in:

4 Chapter 1. API

nanofmt Documentation

#include <nanofmt/forward.h>

namespace nanofmt {
template<>
struct formatter<my_type> {
constexpr char const* parse(char const* in, char const*) noexcept;

template <typename OutputT>
void format(my_type const& value, OutputT& output);

}
}

1.1.4 Format Length

The nanofmt::format_length() function returns the length of result of formatting the given format string and
arguments, excluding any terminating NUL character.

size_t nanofmt::format_length(format_string format_str, Args const&... args)

size_t nanofmt::vformat_length(format_string format_str, format_args args)

1.1.5 Output Buffers

struct nanofmt::format_output

1.1.6 Format to Buffer

The nanofmt::format_output& overloads of nanofmt::format_to() format a given format string and arguments
into the target buffer. The result will not be NUL-terminated. The return value is the buffer object itself.

format_output &format(format_string fmt, Args const&... args)
Formats the given format string and argument into the buffer.

format_output &vformat(format_string fmt, format_args args)
Formats the given format string and argument into the buffer.

constexpr format_output &append(char const *const zstr) noexcept
Appends the contents of zstr to the buffer.

constexpr format_output &append(char const *source, std::size_t length) noexcept
Appends length characters from source to the buffer.

constexpr format_output &put(char ch) noexcept
Appends the character ch to the buffer.

constexpr format_output &fill_n(char ch, std::size_t count) noexcept
Appends count copies of the character ch to the buffer.

constexpr format_output &advance_to(char *const p) noexcept
Updates the buffer position to p and adjusts the advance member appropriately.

1.1. Formatting 5

nanofmt Documentation

char *pos = nullptr
Current output position of the buffer. For custom formatting operations, use this value for the output
position. The advance_to() function should always be preferred for mutating the pos member.

char const *end = nullptr
The end pointer for the buffer. Custom formatting code should never advance pos past the end
pointer, and should never dereference end.

std::size_t advance = 0
The number of characters that were written to the buffer, ignoring any truncation. Even when pos
equals end, operations on the buffer will still increment advance.

The advance_to() member function should be preferred over directly mutating advance.

1.1.7 String Utilities

General string utiltities that are useful in implementing formatting.

char *copy_to(char *dest, char const *end, char const *source) noexcept
Copy the source string to the destination buffer, but not extending past the provided buffer end pointer. Returns
the pointer one past the last character written.

char *copy_to_n(char *dest, char const *end, char const *source, std::size_t length) noexcept
Copies up to length characters of source string to the destination buffer, but not extending past the provided
buffer end pointer. Returns the pointer past the last character written.

char *put(char *dest, char const *end, char ch) noexcept
Copies the provided character ch to the destination buffer, but not extending past the provided buffer end pointer.
Returns the pointer past the last character written.

char *fill_n(char *dest, char const *end, char ch, std::size_t count) noexcept
Copies count copies of the charcter ch to the destination buffer, but not extending past the provided buffer end
pointer. Returns the pointer past the last character written.

std::size_t strnlen(char const *buffer, std::size_t count) noexcept
Returns the length of the string in buffer, to a maximum of count.

1.1.8 Format Strings

nanofmt uses a nanofmt::format_string structure for receiving its format strings, to decouple from and support
various string types and classes. Many string types should automatically convert to format_string; for string types
that don’t already support conversion to format_string, a nanofmt::to_format_string() function can be im-
plemented.

struct nanofmt::format_string
Receiver for format strings. Only implicitly constructs from string literals (constant character arrays). Can be
explicitly constructed from other string types.

template<typename T>
format_string nanofmt::to_format_string(T const &value) noexcept

Converts a given string type to a nanofmt::format_string. Works on most standard string types with data()
and size() member functions.

Overload to add support for other string types that require different means of converted to a format_string.

6 Chapter 1. API

nanofmt Documentation

struct nanofmt::format_string_view
A very simple wrapper around a pointer and length. This is provided to make it easier to write
nanofmt::formatter specializations that work on length-delimited string views, by deriving from
nanofmt::formatter<format_string_view>.

char const *string = nullptr

std::size_t length = 0

1.1.9 Variadic Arguments

struct nanofmt::format_args
List of format args. Typically only constructed from nanofmt::make_format_args(). Does not take owner-
ship of any internal data.

Warning: Storing an instance of format_args can result in dangling references.

auto nanofmt::make_format_args(Args const&... args)

Danger: This function should usually only be used directly in a call to a function accepting a
nanofmt::format_args parameter.

1.2 Character Conversion

The character conversion API is available in the header nanofmt/charconv.h.

char *nanofmt::to_chars(char *dest, char const *end, IntegerT value, int_format fmt = int_format::decimal)
noexcept

Formats value into the buffer using the base specified in fmt.

char *nanofmt::to_chars(char *dest, char const *end, FloatT value, float_format fmt) noexcept
Formats value into the buffer using the base specified in fmt. Uses the shortest precision.

char *nanofmt::to_chars(char *dest, char const *end, FloatT value, float_format fmt, int precision) noexcept
Formats value into the buffer using the base specified in fmt. Uses the given precision, whose meaning
depends on the specified format.

enum class nanofmt::int_format
Specify whether to use base 10, base 16, or base 2. Base 16 has an uppercase variant.

enumerator decimal
Base 10.

enumerator hex
Base 16.

enumerator hex_upper

enumerator binary
Base 2.

1.2. Character Conversion 7

nanofmt Documentation

enum class nanofmt::float_format
Specify whether to use scientific, fixed, or general precision formatting. Scientific and general also have upper-
case variants.

enumerator scientific
Scientific notation formats floating point values as [-]d.de[+-]dd.

enumerator scientific_upper

enumerator fixed
Fixed-point notation formats floating point values as [-]d.dddd.

enumerator general
General precision notation formats in either scientific or fixed-point notation, depending on the exponent
of the value.

enumerator general_upper

8 Chapter 1. API

CHAPTER

TWO

DESIGN

Contents

• Design

– Origins

– Output Iterators

– Localization

– Character Conversion

– constexpr

– Alignment, Width, Alternate Forms, and Other Specifiers

2.1 Origins

The design of nanofmt started by trying to closely match the interface of std::format and fmtlib. This includes the
general naming of functions and types as well as the design of the make_format_args and related utilities.

2.2 Output Iterators

A major design note of nanofmt is that the only output target supported are char arrays. This is one of the largest
simplifying factors in nanofmt vs either std::format or fmtlib.

This is feasible since fixed-size buffers and the complete avoidance of any allocating routines is exceedingly common
in nanofmt’s target domains. In the rare cases that arbitrary-length formatting is required, the use of format_length
allows pre-allocating any necessary buffer.

For one, arbitrary output iterator support effectively requires all formatting code to live in headers, with only the oc-
cassional pieces living in individual TUs. This is because the format_context<> in std::format/fmtlib is itself a
type template.

Supporting arbitrary output iterators requires having full output iterator machinery in the first place. Output iterators
that need to functions with fixed-length outputs are non-trivial to write.

More importantly, making such generalized output iterator support reasonably fast requires even more complexity in
terms of temporary buffers, buffer flushing, and so on. Such buffering mechanisms are also required to enable any kind
of efficient type-erasure of the output iterators.

9

nanofmt Documentation

There’s even further machinery necessary for making common output iterators efficient. Consider
back_inserter<T>. An efficient implementation of std::format needs to detect that its output iterator is a
back_inserter and transparently replace calls to push_back to more efficient append or insert invocations.

The use of these output iterators is mostly to support things like streaming to console IO, to support push_back into
containers like std::string, or esoteric filtering mechanisms. None of these are essential to nanofmt’s target use
cases.

The design and implementation pioneered by Victor Zverovich for fmtlib is some honestly amazing engineering! Victor
and other fmtlib contributors deserve nothing but praise and respect for the incredible amount of work done to make
fmtlib (and by extension std::format) feel natural, intuitive, and unsurprising in C++ while still having exceptionally
good runtime efficiency.

nanofmt however is more for teams that feel that C-like APIs like snprintf are already the epitome of being natural,
intuitive, and unsurprising; except of course for the limitations imposed by C’s varargs vs C++’s variadic tempaltes.

Ultimately, the complexity cost of supporting other kinds of output iterators is high, and the benefit for nanofmt users
is low.

2.3 Localization

nanofmt only supports char and does not bother with any of wchar_t/ char8_t, char16_t, or char32_t.

Additionally, the L format specification flag is parsed but ignored.

nanofmt only supports char because that is, by and large, the only character type in active use in its target domains.
Target systems can and do assume that all char* strings are UTF-8. The type-system bifurcation created by char8_t
has caused problems for the few projects that took to using u8"" literals, as it required every function taking a char*
to offer a second overload that also accepted char8_t*. The result has mostly been projects starting to use u8 literals
in C++17 and abandoning them soon after since C++20 compatibility changed the types in a very incompatible and
gratuitous way.

The localization flags are unsupported as the target uses of nanofmt tend not to ever bother with localization. Logging
can actually be harmed by localization as it makes log parsers and alert systems far more difficult to deploy and maintain.
“User-facing” formatting in nanofmt’s target domains is generally just developer tools and utilities, which are effectively
never localized due both to the cost of localizing propriety in-house tools and to the rapid rate of change in such tools;
keeping localization up-to-date is not especially feasible in those environments.

While nanofmt targets games developers in particular, and games are heavily and frequently localized, it is not ex-
pected that nanofmt would be used for player-facing text. Game UI text tends to use heavily specialized toolkits and
rely on iconography, layout, color and style, and other factors to convey information; nanofmt-like text formatting is
exceptionally rare in such UI.

2.4 Character Conversion

nanofmt includes implementations of to_chars mostly because there are shipping “C++17” implementations that are
very much in common use in target industries but which do not offer complete to_chars implementations. This is
especially true for float/double.

nanofmt uses the Dragonbox reference implementation in its floating-point to_chars implementations. There are no
fallbacks to other implementations as found in fmtlib or std::to_chars. This in particular limits the precision of
fixed-point formats in nanofmt.

The precision limitation is not currently believed to be a showstopper, but may be revisited if use cases from nanofmt
users illustrates a strong need for more intricate fixed-point formatting.

10 Chapter 2. Design

nanofmt Documentation

The Dragonbox reference implementation is used for the work-horse portions of floating-point to decimal conversion.

2.5 constexpr

Most of nanofmt is not constexpr. This is an intentional choice.

Making a constexpr-friendly formatting library unfortunately requires that most of the implementation of the formatters
and all supporting machinery also be constexpr, which in turn means it all has to live in headers.

This might be a much smaller issue once we’re all living with C++20 modules, but today, the cost paid by every user
for constexpr capabilties is very high.

That said, constexpr formatting is a generally useful feature. nanofmt may, if use cases arise, offer a second
const_format.h header or the like which includes/imports constexpr definitions of the format implementations. Such
an approach would allow individual TUs to opt-in to pulling in all the machinery if and only if they actually need it.

Note that we have thus far kept the parsing* part of nanofmt all constexpr capable, since we may wish to enable compile-
time format string checking capabilities for projects that (wisely) prefer such a feature. All known potential users of
nanofmt are not yet using C++20 so compile-time checking isn’t a priority. We may instead opt to just entirely drop
the constexpr parsing support if we decide we’re not going to support it anytime soon.

2.6 Alignment, Width, Alternate Forms, and Other Specifiers

nanofmt implements are relatively limited set of the fmtlib/std::format specifiers. All are parsed, but most are
ignored.

This isn’t a “design” so much as just not having had the use cases made for supporting all of them yet. Alternate form
for integers is high on the list, though.

The goal isn’t to be feature-complete, and some of these specifiers are juuust annoying enough to implement that it’ll
only be done on-demand.

2.5. constexpr 11

https://github.com/jk-jeon/dragonbox/

nanofmt Documentation

12 Chapter 2. Design

CHAPTER

THREE

FAQ

Contents

• FAQ

– Who is This For?

– Why??

– Compile Times? Really?

– Why Avoid Standard Headears?

– How Does nanofmt Help With Compile Times?

– No IO Support For Real?

– Won’t C++20 Modules Make This Obsolute?

– What Does nanofmt Support?

– What Does nanofmt Not Support?

– Does it Support Floating-Point Types?

– Was it Worth It?

– Will This be Maintained?

3.1 Who is This For?

Developers and teams who are still choosing to use snprintf or related technologies instead of fmtlib or std::format.

Developers and teams who are using snprintf and have explicitly rejected fmtlib, but still want to get its two biggest
features: type-aware formatting and user-extensible type support.

Said developers are still okay with accepting snprintf’s other limitation of only being able to write to character
buffers.

13

https://en.cppreference.com/w/c/io/fprintf
https://github.com/fmtlib/fmt
https://en.cppreference.com/w/cpp/utility/format/format
https://github.com/fmtlib/fmt

nanofmt Documentation

3.2 Why??

The author has worked on multiples teams in the AAA games industry that have strong cultural tendencies to prefering
snprintf for all string formatting. Reasons cited are usually something like:

• Minimizing dependencies, as a reason not to use fmtlib.

• Supporting older compilers, as a reason not to use std::format.

• Deep distrust of standard headers, as a reason to avoid std::format; and any library that uses many standard
headers, as a reason not to use fmtlib.

• Dislike of namespaces. Note that nanofmt at this time doesn’t “help” here but it’s a very possible/probable future
evolution.

• Compile times, as a reason to reinvent every wheel.

3.3 Compile Times? Really?

That’s two questions, but yes and yes.

It is common (though not universal!) in industries like AAA game development to heavily optimize for compilation
times. The primary reason for this is iteration speed.

This is a large, complex, and nuanced topic. It is very inaccurate to say that “all game developers” need or care about
X.

The best summary for this FAQ, though: some developers critically value having very fast edit-run-test cycles and will
spend considerable time and effort up-front to make those cycles faster later.

nanofmt is meant for teams who include “minimizing C++ compilation times” in their efforts to achieve the fastest
edit-run-test cycles.

3.4 Why Avoid Standard Headears?

Historically, many standard headers have been very “heavy,” introducing tens or hundreds of thousands of lines of
complex C++ into any translation unit including them. Compile times have suffered.

Beyond the headers themselves, standard library implementations are generally written to a level of completeness and
foolproof-ness that imposes costs some developers don’t wish to pay for.

For example, the checked iterators_ machinery in MSVC and the equivalents in libstdc++ and libc++ impose a cost.
Even when disabled, the cost is found in numerous small wrapper functions and other utilities that tend to decrease
compiler throughput for an otherwise disabled feature.

Teams that care about these items will often write code that is more like C, with plenty of raw pointers and thin
abstractions, simply because it’s easier and faster for the compiler to process.

14 Chapter 3. FAQ

https://github.com/fmtlib/fmt
https://github.com/fmtlib/fmt

nanofmt Documentation

3.5 How Does nanofmt Help With Compile Times?

To be clear, nanofmt at this point has not been extensively benchmarked with any rigor, and we’re only _assuming_ it
helps.

The design around not using output iterators is one way nanofmt aims to improve over fmtlib or std::format for
teams that deeply care about compile times.

In general, nanofmt is written to be more C-like in the sense that abstractions are minimal, plain values are used where
possible, and raw pointers are used exclusively in place RAII containers, smart pointers, or iterator wrappers.

The result is simply a lot less code to do (some of) the same stuff. The loss of abstractions necessarily comes with a
large loss of functionality and flexibility. nanofmt is the result when the choice is made to lean in favor of simpler (and
faster to compile) code rather than more featureful but complicated code.

3.6 No IO Support For Real?

Not at the time of writing, no. The author’s experience is that actual direct-to-console writing is (relatively) rare, even
with developer tools, in target domains. Direct IO to files is very rare, and directly IO to socket streams is close to
unheard of, in target domains.

Where console IO does happen, these are usually either tools that are far more open to using standard libraries or
librarieies like fmtlib. The few remaining cases can make do just fine with using char arrays as a temporary buffer.

Yes, it’s slower and more constricting to writing to a buffer before writing to (already buffered) standard output facilities.
These aren’t the areas of performance that the kinds of teams who might use nanofmt really care about, though.

3.7 Won’t C++20 Modules Make This Obsolute?

Maybe? Hopefully? Less duplicate code to maintain is only a good thing. I will only be happy if I never have to
personally think about a floating- point string conversion routine again.

The reality is likely a bit more murky. For one, nanofmt exists now but C++20 modules are possibly still years away
from even being a viable option for new projects. At the time of writing, compiler support is incomplete and very buggy;
build system support is nearly non-existant; module-aware linters and doc generators and like is also non-existant; and
the general user and ecosystem support can best be described as nascent.

Further, note that modules only help part of the compile time overhead. At best, we can expect modules to reduce
the cost of parsing large header hierarchies. While that is a significant amount of the time incurred with compiling
libraries like fmtlib or std::format, another large chunk of the time goes into instantiating templates, resolving
function overloads, evaluating constexpr functions, and so on.

nanofmt, by virtue of steeply limiting its feature set and general applicability, aims to reduce the need for as much of that
“use time” overhead as possible. While it’s almost certainly impossible to hit the minimal compile-time of snprintf,
the goal is to keep the difference small enough that the “developer time” benefits of a type-safe user- extensible format
library outweighs the compile time costs.

3.5. How Does nanofmt Help With Compile Times? 15

https://github.com/fmtlib/fmt
https://github.com/fmtlib/fmt
https://github.com/fmtlib/fmt

nanofmt Documentation

3.8 What Does nanofmt Support?

In general, it supports type-aware and user-extensible formatting using the standard format specification<std-format-
spec>, mostly.

It supports writing to length-delimited char* arrays.

Support exists for formatting most standard built-in C++ types, including typical integer and floating-point types,
booleans, characters, raw pointers, and C-style strings.

The std_string.h header may be included for std::basic_string and std::basic_string_view support.

3.9 What Does nanofmt Not Support?

There is no support for output iterators other than char*.

There is no support for character types other than char.

There is no support for locales.

There is no formatter support for standard library types. The std_string.h header enables support for standard string
types.

There is no support for console or file IO.

There is no support for versions of the language older than C++17.

There is no drop-in API compatibility with either fmtlib or std::format.

There is no support for long double and no suport for (u)int128_t.

Any feature of fmtlib or std::format not explicitly named in this or the prior section should likely be considered
unsupported.

3.10 Does it Support Floating-Point Types?

Yes, nanofmt has support for both float and double.

The Dragonbox reference implementation is used for the work-horse portions of float to decimal conversion.

3.11 Was it Worth It?

Probably not.

The nanofmt author has implemented several fmtlib replacements for work.

In comparison, the author has been working on nanofmt for 12+ hours/day for about a week; and that doesn’t include
all the time the author spent building the precursors to nanofmt in personal projects, going all the way back to formatxx
(an “ancient” C++11 library), and including re-writing formatxx to incorporate into commercial game codebases with
specialized requirements (like drop-in Boost.Format compatibility).

16 Chapter 3. FAQ

https://github.com/fmtlib/fmt
https://github.com/fmtlib/fmt
https://github.com/jk-jeon/dragonbox/
https://github.com/fmtlib/fmt
https://github.com/seanmiddleditch/formatxx/
https://www.boost.org/doc/libs/1_77_0/libs/format/doc/format.html

nanofmt Documentation

3.12 Will This be Maintained?

Excellent question.

. . . too soon to tell. If having a dedicated maintainer is important to you, this library might be a little too new and
untested for your needs.

As stated in the C++ modules FAQ question, there’s a very real future where this entire library is obsolete. To that end,
while nanofmt is not a direct drop-in replacement for std::format, it aims to be “close enough” that migrating from
nanofmt to the standard equivalent is meant to be straightforward.

3.12. Will This be Maintained? 17

nanofmt Documentation

18 Chapter 3. FAQ

CHAPTER

FOUR

BENCHMARKS

4.1 Compilation

TBD

4.2 Execution

TBD

19

nanofmt Documentation

20 Chapter 4. Benchmarks

CHAPTER

FIVE

LICENSE

Copyright © Sean Middleditch and contributors

nanofmt is released under the MIT license.

nanofmt uses the Dragonbox reference implementation by Junekey Jeon which is released under either the Apache
License Version 2.0 with LLVM Exceptions or the Boost Software License Version 1.0.

21

https://github.com/seanmiddleditch/nanofmt/blob/main/LICENSE.md
https://github.com/jk-jeon/dragonbox/
https://github.com/jk-jeon/dragonbox/blob/master/LICENSE-Apache2-LLVM
https://github.com/jk-jeon/dragonbox/blob/master/LICENSE-Apache2-LLVM
https://github.com/jk-jeon/dragonbox/blob/master/LICENSE-Boost

nanofmt Documentation

22 Chapter 5. License

CHAPTER

SIX

BASIC USAGE

Example usage of writing a string with two variables formatted into the output.

char buffer[128];
nanofmt::format_to(buffer, "Hello, {0}! You are visitor {1}.",
UserName,
VisitorCount);

See also our Detailed Examples.

23

nanofmt Documentation

24 Chapter 6. Basic Usage

CHAPTER

SEVEN

API OVERVIEW

The crux of the API is writing to a char arrays. Writing directly to an array just works:

char buffer[128];
format_to(buffer, "Format this {}", 128);

A pointer to a buffer and a length can also be provided for safe writing.

format_to_n(buffer, size, "Format this {}", 128);

The format functions all return a char* pointing to the terminating NUL that is always written to the buffer.

char* end = format_to(buffer, "{} is {}", seven, 7);
size_t const size = end - buffer;

The nanofmt functions understand the same positional arguments and most format flags of std::format.

format_to(buffer, "{1} then {0}", "Second", "First");
// buffer: First then Second

If the length of formatted text is required, e.g. for allocating buffer space, the nanofmt::format_length() function
can be used:

size_t const length = format_length("{} plus {}", 7, 7);

char* dest = (char*)malloc(length + 1/*NUL byte*/);
format_to_n(buffer, length + 1, "{} plus {}", 7, 7);

nanofmt also includes implementation of the C++17 standard to_chars functions, for codebases that are unable
or unwilling to use the standard versions, or who are using older compilers that lack support for floating-point
std::to_chars

See the API for more in-depth coverage of the nanofmt facilities.

25

https://en.cppreference.com/w/cpp/utility/format/format
https://en.cppreference.com/w/cpp/utility/to_chars

nanofmt Documentation

26 Chapter 7. API Overview

CHAPTER

EIGHT

THE CASE FOR NANOFMT

nanofmt may be a good fit for teams or codebases which are unable or unwilling to use fmtlib or std::format, particularly
if the reasons involve compilation time or standard library header dependencies.

The only headers nanofmt relies on are <type_traits>, <cstddef>, <cstdint>, and <cmath>.

Teams that might otherwise continue to prefer using snprintf may find that nanofmt is far more to their tastes.

Anyone unsure of whether they should use nanofmt as their should almost certainly consider using fmtlib or
std::format instead.

Both fmtlib and the standard formatting facilities offer far more features, far more idiomatic C++ support, and integrate
far better with both the rest of the C++ ecosystem and core IO.

27

https://github.com/fmtlib/fmt
https://en.cppreference.com/w/cpp/utility/format/format

nanofmt Documentation

28 Chapter 8. The Case for nanofmt

CHAPTER

NINE

DETAILED EXAMPLES

9.1 Custom Types

Provide a specialization of nanofmt::formatter to enable nanofmt to consume values of a custom type.

struct MyType {
std::string FirstName;
std::string LastName;

};

namespace nanofmt {
template <>
struct formatter<MyType> {
bool reverse = false;

constexpr char const* parse(char const* in, char const* end) noexcept;
inline void format(MyType const& value, buffer& output) noexcept;

};
}

char buffer[128];
format_into(buffer, "Greetings {:r}!", MyType{"Bob", "Bobson");

// buffer would contain:
// Greetings Bobson, Bob

What does that :r do? That’s a custom formatter flag supported by the MyType formatter. A possible implementation:

constexpr char const* nanofmt::formatter<MyType>::parse(char const* in, char const* end)␣
→˓noexcept {
if (in != end && *in == 'r')
++in;
reverse = true;

}
return reverse;

}

void nanofmt::formatter<MyType>::format(MyType const& value, buffer& output) noexcept {
if (reverse)
format_into(output, "{}, {}", LastName, FirstName);

else
(continues on next page)

29

nanofmt Documentation

(continued from previous page)

format_into(output, "{} {}", FirstName, LastName);
}

9.2 Length-Delimited Buffers

nanofmt automatically length-delimits any attempt to write to a char[] array. When using raw pointers, or to futher
constrain the output length, the format_into_n functions may be used.

The format functions return a pointer to the last character written (excluding the NUL byte). This can be used to chain
format calls, or to calculate the written length.

char* ptr = GetBufferData();
size_t size = GetBufferSize();

char* end = format_into_n(ptr, size, "Format this! {}", value);

size_t const length = end - ptr;

30 Chapter 9. Detailed Examples

INDEX

A
advance (C++ member), 6
advance_to (C++ function), 5
append (C++ function), 5

C
copy_to (C++ function), 6
copy_to_n (C++ function), 6

E
end (C++ member), 6

F
fill_n (C++ function), 5, 6
format (C++ function), 5

N
nanofmt::float_format (C++ enum), 7
nanofmt::float_format::fixed (C++ enumerator),

8
nanofmt::float_format::general (C++ enumera-

tor), 8
nanofmt::float_format::general_upper (C++

enumerator), 8
nanofmt::float_format::scientific (C++ enu-

merator), 8
nanofmt::float_format::scientific_upper

(C++ enumerator), 8
nanofmt::format_append_to (C++ function), 4
nanofmt::format_append_to_n (C++ function), 4
nanofmt::format_args (C++ struct), 7
nanofmt::format_length (C++ function), 5
nanofmt::format_output (C++ struct), 5
nanofmt::format_string (C++ struct), 6
nanofmt::format_string_view (C++ struct), 6
nanofmt::format_string_view::length (C++

member), 7
nanofmt::format_string_view::string (C++

member), 7
nanofmt::format_to (C++ function), 4
nanofmt::format_to_n (C++ function), 4

nanofmt::formatter (C++ struct), 4
nanofmt::formatter::format (C++ function), 4
nanofmt::formatter::parse (C++ function), 4
nanofmt::int_format (C++ enum), 7
nanofmt::int_format::binary (C++ enumerator), 7
nanofmt::int_format::decimal (C++ enumerator),

7
nanofmt::int_format::hex (C++ enumerator), 7
nanofmt::int_format::hex_upper (C++ enumera-

tor), 7
nanofmt::make_format_args (C++ function), 7
nanofmt::to_chars (C++ function), 7
nanofmt::to_format_string (C++ function), 6
nanofmt::vformat_append_to (C++ function), 4
nanofmt::vformat_append_to_n (C++ function), 4
nanofmt::vformat_length (C++ function), 5
nanofmt::vformat_to (C++ function), 4
nanofmt::vformat_to_n (C++ function), 4

P
pos (C++ member), 5
put (C++ function), 5, 6

S
strnlen (C++ function), 6

V
vformat (C++ function), 5

31

	API
	Formatting
	Format to Array
	Length-Delimited Formatting
	Custom Formatters
	Format Length
	Output Buffers
	Format to Buffer
	String Utilities
	Format Strings
	Variadic Arguments

	Character Conversion

	Design
	Origins
	Output Iterators
	Localization
	Character Conversion
	constexpr
	Alignment, Width, Alternate Forms, and Other Specifiers

	FAQ
	Who is This For?
	Why??
	Compile Times? Really?
	Why Avoid Standard Headears?
	How Does nanofmt Help With Compile Times?
	No IO Support For Real?
	Won’t C++20 Modules Make This Obsolute?
	What Does nanofmt Support?
	What Does nanofmt Not Support?
	Does it Support Floating-Point Types?
	Was it Worth It?
	Will This be Maintained?

	Benchmarks
	Compilation
	Execution

	License
	Basic Usage
	API Overview
	The Case for nanofmt
	Detailed Examples
	Custom Types
	Length-Delimited Buffers

	Index

